Nanoscale Engineering for Biomaterial Surfaces

نویسندگان

  • Anna Marie Lipski
  • Claude Jaquiery
  • Hoon Choi
  • Daniel Eberli
  • Molly Stevens
  • Ivan Martin
  • I-Wei Chen
  • V. Prasad Shastri
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Engineering and Patterning Using Parylene for Biological Applications

Parylene is a family of chemically vapour deposited polymer with material properties that are attractive for biomedicine and nanobiotechnology. Chemically inert parylene “peel-off” stencils have been demonstrated for micropatterning biomolecular arrays with high uniformity, precise spatial control down to nanoscale resolution. Such micropatterned surfaces are beneficial in engineering biosensor...

متن کامل

Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces

Biofilm growth on the implant surface is the number one cause of the failure of the implants. Biofilms on implant surfaces are hard to eliminate by antibiotics due to the protection offered by the exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune cells. Application of metals in nanoscale is considered to resolve biofilm formation. Here we...

متن کامل

Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications.

Spider silk shows great potential as a biomaterial: in addition to biocompatibility and biodegradability, its strength and toughness are greater than native biological fibres (e.g. collagen), with toughness exceeding that of synthetic fibres (e.g. nylon). Although the ultimate tensile strength and toughness at failure are unlikely to be limiting factors, its yield strain of 2% is insufficient, ...

متن کامل

Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured titanium surfaces

The development of biomaterial surfaces possessing the topographical cues that can promote mesenchymal stem cell recruitment and, in particular, those capable of subsequently directing osteogenic differentiation is of increasing importance for the advancement of tissue engineering. While it is accepted that it is the interaction with specific nanoscale topography that induces mesenchymal stem c...

متن کامل

Bioengineering of Improved Biomaterials Coatings for Extracorporeal Circulation Requires Extended Observation of Blood-Biomaterial Interaction under Flow

Extended use of cardiopulmonary bypass (CPB) systems is often hampered by thrombus formation and infection. Part of these problems relates to imperfect hemocompatibility of the CPB circuitry. The engineering of biomaterial surfaces with genuine long-term hemocompatibility is essentially virgin territory in biomaterials science. For example, most experiments with the well-known Chandler loop mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016